Refine Your Search

Topic

Author

Search Results

Technical Paper

Bumper Fatigue Cracks

2003-11-18
2003-01-3673
One thing that is very important in a carmaker company is its know-how built during all its life. Such an experience allows, for instance, to correlate the customer expected product life with accelerated tests procedures. When it comes to cars, it is usual to have correlated proving routes in such way that if a prototype can take a number of passing in the proving ground without failure, it is unlikely the car is going to fail during a regular life. In the other hand, if a failure at determined percentage of the test happens, it is predictable that the same failure shows up at the same percentage of the product design life. This paper proposes a methodology based on the SxN fatigue theory to solve durability issues observed in correlated durability tests.
Technical Paper

Effect of Test Section Configuration on Aerodynamic Drag Measurements

2001-03-05
2001-01-0631
Aerodynamic measurements in automotive wind tunnels are degraded by test section interference effects, which increase with increasing vehicle blockage ratio. The current popularity of large vehicles (i.e. trucks and sport utility vehicles) makes this a significant issue. This paper describes the results of an experimental investigation carried out in support of the Ford/Sverdrup Driveability Test Facility (DTF), which includes an aero-acoustic wind tunnel (Wind Tunnel No. 8). The objective was to quantify the aerodynamic interference associated with two candidate test section configurations for Wind Tunnel No. 8-semi-open jet and slotted wall. The experiments were carried out at 1/11-scale in Sverdrup laboratories. Four automobile shapes (MIRA models) and six Sport Utility Vehicle (SUV) shapes representing blockages from 7% to 25% were used to evaluate changes in measured aerodynamic coefficients for the two test section configurations.
Technical Paper

Active Damping of Engine Idle Speed Oscillation by Applying Adaptive Pid Control

2001-03-05
2001-01-0261
This paper investigates the use of an adaptive proportional-integral-derivative (APID) controller to reduce a combustion engine crankshaft speed pulsation. Both computer simulations and engine test rig experiments are used to validate the proposed control scheme. The starter/alternator (S/A) is used as the actuator for engine speed control. The S/A is an induction machine. It produces a supplemental torque source to cancel out the fast engine torque variation. This machine is placed on the engine crankshaft. The impact of the slowly varying changes in engine operating conditions is accounted for by adjusting the APID controller parameters on-line. The APID control scheme tunes the PID controller parameters by using the theory of adaptive interaction. The tuning algorithm determines a set of PID parameters by minimizing an error function. The error function is a weighted combination of the plant states and the required control effort.
Technical Paper

Transitioning Automotive Testing from the Road to the Lab

2004-03-08
2004-01-1770
The importance of the automotive test facility has increased significantly due in large part to continuous pressure on manufactures to shorten product development cycles. Test facilities are no longer used only for regulatory testing, or development testing in which the effects of small design changes (A-to-B testing) are determined; automotive manufacturers are beginning to use these facilities for final design validation, which has traditionally required on road testing. A host of resources have gone into the design and construction of facilities with the capability to simulate nearly any environment of practical importance to the automotive industry. As a result, there are now a number of test facilities, and specifically wind tunnels, in which engineers can test most aspects of a vehicle's performance in real-world environments.
Technical Paper

Analytical Methods for Durability in the Automotive Industry - The Engineering Process, Past, Present and Future

2001-03-05
2001-01-4075
In the early days of the automotive industry, durability and reliability were hit or miss affairs, with end-users often being the first to know about any durability problems - and in many cases forming an essential part of the development process. More recently, automotive companies have developed proving ground and laboratory test procedures that aim to simulate typical or severe customer usage. These test procedures have been used to develop the products through a series of prototypes and to prove the durability of the product prior to release in the marketplace. Now, commercial pressures and legal requirements have led to increasing reliance on CAE methods, with fatigue life prediction having a central role in the durability engineering process.
Technical Paper

Laboratory Experience with the IR-TRACC Chest Deflection Transducer

2002-03-04
2002-01-0188
In 1998, Rouhana et al. described development of a new device, called the IR-TRACC (InfraRed - Telescoping Rod for Assessment of Chest Compression). In its original concept, the IR-TRACC uses two infrared LEDs inside of a telescoping rod to measure deflection. One LED serves as a light transmitter and the other as a light receiver. The output from the receiver LED is converted to a linear function of chest compression using an analog circuit. Tests have been performed with IR-TRACC units at various labs around the world since 1998. A first-generation IR-TRACC system was retrofit into a Q3 dummy by TNO. Similarly, a mid sized male Hybrid III dummy thorax and a small female Hybrid III dummy thorax have been designed by First Technology Safety Systems (FTSS) such that each contains 4 second-generation IR-TRACC units. The second-generation IR-TRACC is the result of continued development by FTSS, especially in the areas of the analysis circuit, manufacturing and calibration methods.
Technical Paper

The Driveability Test Facility Wind Tunnel No. 8

2002-03-04
2002-01-0252
The Sverdrup Driveability Test Facility (DTF) represents a new type of partnership in automotive testing between a supplier (Sverdrup Technology) and an original equipment manufacturer (Ford Motor Company). The facility was designed and built by Sverdrup to Ford's specifications. It is also operated and maintained by Sverdrup, with Ford as its “anchor” client under a long-term lease-back arrangement. Test time that goes unused by Ford is made available to other customers. Wind Tunnel 8 (WT8) is one of the test facilities within the DTF, which includes two other climatic wind tunnels and several supporting test cells. This tunnel combines aerodynamic, acoustic, climatic, and powertrain capabilities within one facility. The airline was optimized during the design stage for the competing requirements of excellent flow quality, very low background noise, and climatic capability.
Technical Paper

Modeling, Simulation, and Hardware-in-the-Loop Transmission Test System Software Development

2003-03-03
2003-01-0673
This paper describes the development of a generic test cell software designed to overcome many vehicle-component testing difficulties by introducing modern, real-time control and simulation capabilities directly to laboratory test environments. Successfully demonstrated in a transmission test cell system, this software eliminated the need for internal combustion engines (ICE) and test-track vehicles. It incorporated the control of an advanced AC induction motor that electrically simulated the ICE and a DC dynamometer that electrically replicated vehicle loads. Engine behaviors controlled by the software included not only the average crankshaft torque production but also engine inertia and firing pulses, particularly during shifts. Vehicle loads included rolling resistance, aerodynamic drag, grade, and more importantly, vehicle inertia corresponding to sport utility, light truck, or passenger cars.
Technical Paper

Development of Lift and Drag Corrections for Open Jet Wind Tunnel Tests for an Extended Range of Vehicle Shapes

2003-03-03
2003-01-0934
Wind Tunnel 8 of the Driveability Test Facility (DTF), which achieved full operational status in 2001, is designed to provide full powertrain, aerodynamic, and aero-acoustic test capabilities for automotive product development. In order for it to be fully integrated into product testing, the Ford product engineering community needed to correlate the facility. The major objective of the correlation is quantitative aerodynamic correlation, which will be achieved when aerodynamic coefficients measured in Wind Tunnel 8 can be understood in the context of aerodynamic measurements obtained in other wind tunnels that Ford has used for product testing. The motivation for this study is the aerodynamic interference that is present in all wind tunnels. Aerodynamic interference is the deviation between the true result—which is difficult to determine—and the actual result obtained from the wind tunnel.
Technical Paper

A Comparative Study of Corrosion Test Environments at Three Proving Grounds

2003-03-03
2003-01-1240
This paper presents the progress of an ongoing corrosion study of vehicle microenvironments. The study identifies the difference of corrosion microenvironments at various automotive proving grounds, using a sensor-equipped vehicle. A vehicle was instrumented for the proving ground test study. Various types of environmental sensors were installed at more than thirty-five sites on the vehicle. These sensors measured the temperature and relative humidity of the ambient air, and the temperature and time-of-wetness of the sites' surfaces. Cold rolled steel (CRS) and Zinc (Zn) corrosion rate sensors were also used in the experiments. The comparative analysis of vehicle microenvironments and corrosion rates of CRS and Zn, from three corrosion proving ground tests, will be discussed.
Technical Paper

The Ford Motor Company Spin-Torsional NVH Test Facility-2

2003-05-05
2003-01-1684
The Ford Spin Torsional NVH TEST Facility developed and completed in 1999 as a state-of-the-art powertrain NVH development facility(1). Since then, various designed capabilities have been verified with test vehicles for multiple applications to facilitate powertrain NVH development. This paper describes fundamental capabilities of the test facility, including input module to simulate engine torque signatures of arbitrary engines (“virtual engine” capability) and absorbing dynamometer systems, functioning as a precision 4WD/AWD chassis dynamometer. The correlation between road test/chassis dynamometer test and Spin-Torsional test is then illustrated, verifying high correlation of vehicle/sub-system responses between conventional vehicle testing and Spin-Torsional test results.
Technical Paper

High Frequency Gear Whine Control by Driveshaft Design Optimization

2003-05-05
2003-01-1478
Generation mechanism of transmission gear whine varies significantly by gear position, frequency and path/amplifier of the total system. Although controlling the source, namely transmission error/dynamic meshing force of the gears is desirable; it is not always feasible as well as most effective. This paper describes the root cause analyses of high frequency gear whine (overdrive position) of commercial vehicle, which combined in-depth experimental and CAE analyses. The generation mechanism of the gear whine is clarified efficiently utilizing Ford Spin-Torsional AWD NVH Test Facility, state-of-the-art Powertrain NVH development test cell, combining vehicle and sub-system NVH measurement. The analyses results showed the O/D gear whine is driveshaft airborne, due to alignment of driveshaft higher bending resonance to air-borne mode (“breathing mode”).
Technical Paper

Vibration Fatigue for Chassis-Mounted, Cantilevered Components

2017-03-28
2017-01-0360
Vehicle chassis mounted cantilevered components should meet two critical design targets: 1) NVH criterion to avoid resonance with road noise and engine vibration and 2) satisfied durability performance to avoid any incident in structure failure and dysfunction. Generally, two types of testing are performed to validate chassis mounted cantilevered component in the design process: shaker table testing and vehicle proving ground testing. Shaker table testing is a powered vibration endurance test performed with load input summarized from real proving ground data and accurate enough to replicate the physical test. The proving ground test is typically performed at critical milestones with full vehicles. Most tests are simplified lab testing to save cost and effort. CAE procedures that virtually replicate these lab tests is even more helpful in the design verification stages.
Technical Paper

Criteria for Predicting Skid Line by Simulation

2017-03-28
2017-01-0300
The risk of skid lines for Class A panels has to be assessed before releasing the die development for hard tooling. Criteria are needed to predict skid lines in the formability evaluation stage to avoid expensive changes to tooling and process for resolving skid line issue in production. In this study, criteria using three different measured parameters were developed and validated. A draw-stretch-draw (DSD) test procedure was developed to generate skid lines on lab samples for the physical evaluation. This was done using tooling with various die entry radii and different draw beads. The skid line severity of lab samples was rated by specialists in the inspection of automotive outer panel surface quality. The skid line rating was correlated with geometric measurements of the lab samples after the DSD test. The sensitivity of the appearance of skid lines to tooling and process parameter variations was identified.
Technical Paper

A Research Study on a Curved Radiator Concept for Automotive Engine Cooling

2017-03-28
2017-01-0631
The need to increase the fuel-efficiency of modern vehicles while lowering the emission footprint is a continuous driver in automotive design. This has given rise to the use of engines with smaller displacements and higher power outputs. Compared to past engine designs, this combination generates greater amounts of excess heat which must be removed to ensure the durability of the engine. This has resulted in an increase in the number and size of the heat exchangers required to adequately cool the engine. Further, the use of smaller, more aerodynamic front-end designs has reduced the area available in the engine compartment to mount the heat exchangers. This is an issue, since the reduced engine compartment space is increasingly incapable of supporting an enlarged rectangular radiator system. Thus, this situation demands an innovative solution to aid the design of radiator systems such that the weight is reduced while maintaining the engine within acceptable operating temperatures.
Technical Paper

Dilute Combustion Assessment in Large Bore, Low Speed Engines

2017-03-28
2017-01-0580
The promising D-EGR gasoline engine results achieved in the test cell, and then in a vehicle demonstration have led to exploration of further possible applications. A study has been conducted to explore the use of D-EGR gasoline engines as a lower cost replacement for medium duty diesel engines in trucks and construction equipment. However, medium duty diesel engines have larger displacement, and tend to require high torque at lower engine speeds than their automobile counterparts. Transmission and final drive gearing can be utilized to operate the engine at higher speeds, but this penalizes life-to-overhaul. It is therefore important to ensure that D-EGR combustion system performance can be maintained with a larger cylinder bore, and with high specific output at relatively low engine speeds.
Technical Paper

Robust Methodology for Fast Crank Angle Based Temperature Measurement

2016-04-05
2016-01-1072
The paper presents a measurement methodology which combines a fine-wire thermocouple with input reconstruction in order to measure crank angle resolved temperature in an engine air-intake system. Thermocouples that are of practical use in engine experiments tend to have a large time constant which affects measurement accuracy during rapid temperature transients. Input reconstruction methods have previously been applied to thermocouples but have not been specifically used in combination with an ultra-thin uninsulated wire thermocouple to investigate cyclic intake temperature behavior. Accurate measurement results are of interest to improve the validity of many crank-angle resolved engine models. An unshielded thermocouple sensor has been developed which is rigid enough to withstand the aerodynamic forces of the intake air.
Technical Paper

Development of a Commercial Truck Parabolic Leaf Spring Using CAE Simulation with Correlated Experimental Stress Analysis Results

2017-11-07
2017-36-0126
The development costs that new design requires are subject to everyday discussions and saving opportunities are mandatory. Using CAE to predict design changes can avoid excessive costs with prototypes parts, considering the high reliability those current mathematical models can provide. This paper presents the methodology used during the development of a parabolic leaf spring for the rear suspension of a commercial truck, considering mainly the parabolic profiles and stress distribution on the leaves, calculated using CAE software (ANSYS) and experimental tests to measure the actual stress on each leaf, certifying the correlation between computational calculations and real stress on the parts during bench and vehicle evaluations.
Technical Paper

Evaluation of Cold Start Technologies on a 3L Diesel Engine

2016-04-05
2016-01-0823
Increasingly stringent emissions regulations require that modern diesel aftertreatment systems must warm up and begin controlling emissions shortly after startup. While several new aftertreatment technologies have been introduced that focus on lowering the aftertreatment activation temperature, the engine system still needs to provide thermal energy to the exhaust for cold start. A study was conducted to evaluate several engine technologies that focus on improving the thermal energy that the engine system provides to the aftertreatment system while minimizing the impact on fuel economy and emissions. Studies were conducted on a modern common rail 3L diesel engine with a custom dual loop EGR system. The engine was calibrated for low engine-out NOx using various combustion strategies depending on the speed/load operating condition.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
X